Eur. Phys. J. A 4, 187-194 (1999)

THE EUROPEAN

PHYSICAL JOURNAL A
(© Springer-Verlag 1999

Pion-nucleon scattering in the K-matrix approach

A B. Gridnev, N.G. Kozlenko

Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188350, Russia (e-mail: gridnev@hep486.pnpi.spb.ru)

Received: 9 July 1998
Communicated by V.V. Anisovich

Abstract. The K-matrix approach with effective Lagrangians is used to describe the S and P pion-nucleon
partial-wave amplitudes in the energy range Fiop < 1 GeV. It is demonstrated, that treating the resonance
as K-matrix a pole gives the natural way to separate the resonance and non-resonance parts of the m/NV
amplitude. The model includes all the four-star 7N resonances, the non-resonance contributions are calcu-
lated from relevant Feynman graphs without any phenomenological form factors. Different contributions

to the inelastic 7~ p — nyn amplitude are estimated.

PACS. 14.20.Gk Baryon resonances — 13.75.Eg Partial wave analysis

1 Introduction

In recent years, there has been a considerable interest,
both theoretical and experimental, in the study of the 7N
interaction at intermediate energies. The reason (for this)
was to obtain a rich information contained in such data.
At low energies, the 7N scattering is one of the best tools
for testing small violations of the chiral symmetry and
isotopic invariance. At higher energies a set of resonances
was found in the wN system. The masses and branching
ratios of these resonances can be used as a test of the quark
structure of baryons. The important problem is to extract
these parameters from experimental data. The usual way
to do this is to use results of the phase shift analysis. Later
on some resonance parameters published in PDG [1] were
obtained using the Dalitz-Tuan representation [2] for the
phase shifts §. The basic ansatz for this representation is
that the phase shifts §, coming from resonance (a Breit-
Wigner type formula is applied here) and background &
are summed. In this case, the S-matrix for pure elastic
scattering has a form:

. M—w+iL
S(w) _ 627,65(111) .12'*3 (1)
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where w is the total c.m. energy, M is mass of the reso-
nance and [ is its width.

This prescription comes only from the unitarity, and
nothing tells us about the origin and energy dependence of
the background. Moreover, the prescription is not unique.
Bofinger and Woolcock [3] demonstrated that different
prescriptions might be described as members of the fol-
lowing one-parameter family (see also [4]):

tan d, + tand,
14 Atandp tand,’

(2)

tand =

the parameter A being arbitrary. The K-matrix approach
to N scattering [5] gives a rather natural argument for
an adequate choice of the A value and a way to estimate
the background. It was demonstrated in [5,6] that this
approach leads to a good description of all the w/N observ-
ables in the whole elastic region including As3 resonance.
The main objective of this paper is to study the energy
interval with open inelastic channels and estimate the pos-
sibility to determine resonance parameters from the phase
shift analysis using the results of [5] as a background.

2 Multichannel K-matrix unitarization
procedure

The scattering amplitude obeys the system of Bethe-
Salpeter equations having the following form

Fab(Qanb,w) = Vab(Qanbaw)
+Z/Vac(qa,qaw)GC(qaw)

X Fcb(Q7Qb7w)dq7 (3)

the sum in the rhs runs over all open channels, G, is the
propagator of the intermediate state c¢. The system (3) is
equivalent to the integral system for the K-matrix

Kab(Qav qb; w) = Vab(qa7 qb, w)

+Z/Vac(qaaQ7w)Rch(Q7w)

X ch(qa v, U))dq

(4)

and to the algebraic one connecting the scattering ampli-
tude with the K-matrix
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’LU) = Kab(Qaa db, ’LU)
+1 Z Kac(Qav de, U))

X QCFcb(qcaqbvw)~ (5)

Fab(Qaa ab,

As is seen from (3) and (4), the K-matrix includes the
same Feynman diagrams as those for the scattering am-
plitude but without on-mass-shell contribution of inter-
mediate states. Let us consider the case when the leading
term of (4) has a pole

ag (qa)ag(Qb) (6)

’U))"‘ Mof’u}

Vab(Qcm qv, ’U}) = Vag(Qaa v,

M, is the bare mass of the resonance and o ab are bare ver-
tices. Introducing the background K- matrlx by the equa-
tion

’LU) = VaBb)(qauqba )
+Z/ o (das v, w)ReGe(q, w)

w)dg, (7)

Kﬁ;(qau db,

x K5(q, qp, 0

we get general solution of (4):

@a(qa, w)o(qy, w) (8)

U)) = Kﬁ;(Qavqln M(w) —w

w) +

Kab(Qaa v,

a2(qa)
3 / K (qa, 4, 0)ReGo(q, w)a2(q)dq (9)

aO(Qaa w) =

q)ReG.(q,w)a.(q, w)dg. (10)

MOfZ/

The energy dependence of the quantity M (w) can be taken
into account by renormalization of the vertex. Indeed, the
mass of the resonance My (now we define it as a K-matrix
pole) is the solution of the equation

(11)
the quantity M (w) thus being of the form
M(w) =

MR+B(w)(MR—w). (12)

Putting (11) into (7), we obtain finally:

ga(Qaa w)gb(va w
MR —w

Kab(Qaa ql)aw) = Kﬁy(Qaaqlnw) + ) (13)

fa(%uw) = aa(Qa,’LU)[l + B(w)]_l/Q.

(13) gives a natural way for splitting the K-matrix into
pole and non-pole terms and defining the resonance as a
K-matrix pole. In this case, the background is the sum
of all Feynman diagrams for the K-matrix without pole

(14)
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in the intermediate state. For pure elastic scattering (all
inelastic channels closed) the scattering amplitude

K
1 -igK
_ €(9)é(a) + KP(q)(Mp — w)

Mp —w —iq[§(q)¢(q) + KP(q) (MR — w)]
have the Breit-Wigner form near the resonance position
w = Mpg. In this case, the K-matrix unitarization proce-
dure corresponds to A = 0 in (2). As is seen from (15),
the background contribution to the amplitude vanishes at
w = Mpg. Thus, the elastic resonance position corresponds
to the energy, for which § = 7/2 even if the background

is present. The multichannel case is more complicated. In
the absence of the background the scattering amplitude

B a(qa, )b (qa, w)
w) = Mpr—w—1iY,qE2(qe, w) (16)

still has the multichannel Breit-Wigner form with the total

width
tot __ : 2
rtt=2 lim Echcgc(qmw).

(15)

Fab(Qavql?a

(17)

But if the background is present, the solution of (5) leads
to a complicated function for the scattering amplitude not
similar to the Breit-Wigner form. This situation can be
improved by using the eigenchannel representation. This
means that we define the new channel basis («, 3, v ...
instead of a, b, ¢ ... in (5)) to transform the K-matrix (13)
into the diagonal from K¢

K¢ =U"KU, (18)

where U is the unitary transformation matrix. As is seen
from (13), the matrix of amplitudes becomes diagonal too.
Only one channel contains the resonance in this represen-
tation (see Appendix for details) with the K-matrix ele-

ment 5 5 )
a\Ga,W)SalGa, W
§ - + p(w),

where £,(qq,w) are the same quantities as in (13) and
©(w) is the non-resonance part. The eigenchannels are in-
dependent (there are no transitions between them), hence
the amplitude for the resonance channel has the same form
(15) as for pure elastic scattering with the width (17).
Then branching ratios can be calculated using the trans-
formation matrix U. This situation is not new for quantum
mechanics. Consider as an example the 7~ p scattering.
The measurable channels are 7~ p — 7 p, 7~ p — 7'n,
797 — 7. So the scattering amplitude is the 2 x 2 ma-
trix. But the conserved quantity is isotopic spin. There-
fore, after transforming this matrix from the charged chan-
nel basis to isotopic one, we get the 2 x 2 diagonal matrix.
If there is a resonance in this system, it has the conserved
isotopic quantum number, so only one channel contains
the resonance (for instance Ass). The branching ratios for
the decay of this resonance to the charged states are deter-
mined by transformation matrix, i.e. Clebsh-Gordan coef-
ficients. The above arguments show that the parametriza-
tion of a resonance as a K-matrix pole is unambiguous,

(19)
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and it satisfies all criteria published in [7] for the existence
of the resonance.

Another set of resonance parameters is given by the
location of the complex pole of the scattering amplitude
(see [7,8] for details). The advantage of the K-matrix
parametrization is that quantities in the physical region
are involved only. But in any specific analysis both set of
the parameters can be calculated.

3 A tree-level model for the K-matrix

The quantity V in (3) is defined as a sum of all irreducible
diagrams. There is an infinite number of those, and no way
to sum them is known, so V' must be approximated by the
finite number of effective diagrams which we believe to be
important physically. Let us start with the elastic scat-
tering. Using general principles, such as parity, angular
momentum and isospin conservation, the irreducible block
V' can be considered as a sum of the t-channel diagrams
with the scalar-isoscalar (o meson) and vector-isovector
(p meson) exchange and s and w-channel diagrams with
nucleon and the nucleon resonances in the intermediate
state. The interaction vertices represent a number of di-
agrams including the loops coming from closed channels.
These loops lead to the finite range of the interaction,
therefore the vertices are functions of momenta of enter-
ing particles. Such interaction is usually considered within
an effective Lagrangian approach, and phenomenological
form factors are introduced to account for the loop contri-
butions. This way was used in [9,10]. The disadvantage is
a large number of free parameters together with the am-
biguity in reducing the four-dimensional Bethe-Salpeter
equation to the three-dimensional one, which can be re-
ally solved [11], In other papers [12,13] the scond term
in rhs of (4) has been neglected. Still, the use of form
factors seems to be inconsistent. Indeed, like form fac-
tors, the neglected term corresponds to the loop diagrams
also. Moreover, these diagrams give the largest interac-
tion range, because they arise from open channels and,
therefore, the lightest particles are involved. On the other
hand, the same arguments which were used to construct
irreducible block V' can be applied to the K-matrix itself.
So, we can suppose that the K-matrix, being a solution of
(4) has a structure similar to V, but with different vertices.
We do not introduce any phenomenological form factor,
because it must arise from (4), thus saving the number
of free parameters. Instead, we assume all vertices to be
constant in some restricted energy interval and check this
assumption by fitting the data. It was demonstrated in
[5], that such a tree-level model for the K-matrix leads to
a good description of data in the elastic energy region. In
this work we also check it for inelastic processes as well.
For P, < 1 GeV/c, there are only three dominant chan-
nels in the 7N interaction: 7N — 7N, 71N — nN and
TN — N

For the elastic channel, we take into account the same
diagrams and Lagrangian densities as in [5] including
contribution from all four-star S and P wIN resonances.
These resonances play an important role at intermediate
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energies, therefore the pseudoscalar-pseudovector mixing
in TN N* interaction is additionally assumed. For S11 res-
onances:

Lrnn+ = —
77,@#7?) 7, + h.e. (20)
—-m

For P11 resonances:

__9nNN- 7 p
1+ Xon- N*75

X (anN*ﬁ +

Lynn- =

1

_ mT |, .c. (21
MN*—i—er“a 7T> w+ he (21)

For S31 and P31 resonances, we use the same formulae,
with 7 being the T35 — Ti/p transition operator. Only
pseudovector coupling is possible for the 3/2-spin reso-
nances. In this case:

grNN*

—u . .

Lann- = Mn- +mlI/N*9;wTWN8 + h.c. (22)
1

O = Guw — | 2N+ + Y RCRE (23)

For the n production, the resonance mechanism and ¢-
channel ag meson exchange [12] are accounted for in an
analogy with the 7N charge exchange reaction, where the
t-channel p exchange was found to be important [7]. Cor-
responding Lagrangian densities are:

InNN~* —
= ——"r— Uy~
1+ Xyne

1
X <ZX?7N* — m

for S resonances and

L,nn=

Wﬂa")?@n + h.c. (24)

1
XN+ + —————— Hnd, + h.c. (2
X <z nN* + M- —&-m%‘a )77 + h.c. (25)

for P resonances. For the ¢-channel ay meson exchange
(26)

Laown = mngaoﬂnaoﬁn- (27)
In order to keep the model as simple as possible, for
the two pion production we follow a phenomenological
quasi-two-body approach [13]. The two pion decay is
parametrized by the coupling to the scalar-isoscalar meson
¢ for T'=1/2 resonances and to the vector-isovector me-
son 5 for T' = 3/2 resonances. The interaction Lagrangians
are:

Loy NN = qaoNnNP TP A

(28)
LEN*N = —ggN*N’)/#'ng“ + h.c. (29)

for P resonances. For S resonances the same formulae
(28,29) with an extra 75 matrix are used. We do not fix

Lonn+ = gonN=YN=7, WO o + h.c.

masses of these ¢ and 5 dummy particles, instead vertex
functions are defined [13] as:
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where fo.,(s,s1) is the vertex calculated with the interac-
tion (28,29) for the total two-pion energy squared s;. The
parameters M, , and Iy, are chose to give the mass and
width of the o meson and p meson. It was found that the
results are not sensitive to precise values of the o-meson
mass and width, so M, = 800 MeV and I" = 400 MeV [1]
were used in the calculation.

4 Fitting procedure

Our goal is not to describe the data in details but to
demonstrate the validity of the approach and to exam-
ine different kinds of couplings and mechanisms for the
1 meson production. Accordingly, the experimental data
used in the fit are the single-energy solutions by Arndt
et al. [14] and Abaev and Kruglov [15] for S and P
partial wave amplitudes. We also try to fit the KH80 [7]
solution. For the same reason only the well-established
four-star resonances are included into calculation, namely,
Py1(1440), S11(1535), S11(1650), Pi3(1720), P33(1232),
S31(1620), and P31(1910). For the 1 meson production we
also consider the P;1(1710) resonance, because it can give
a noticeable contribution to the 7~ p — nn amplitude [1,
16]. The data on the total 7~ p — nn cross section are also
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used in the fit. Unfortunately, these experimental data do
not agree well with each other, that is why the arguments
of [17] were used to clean the database.

5 Results and discussion

It was found that the best fit leads to the mixing param-
eter Xy~ = 0 for all resonances. This means the pure
pseudovector 7 N* coupling. For nIN* coupling the situ-
ation is indefinite to some extent, but nevertheless the
pseudovector coupling gives slightly better description of
data. Only for the 7NN coupling we found the small,
but nonzero, value X,y = 0.1. The possible explanation
of this phenomenon is the PS-PV equivalence theorem,
which is valid when all particles entering the vertex are on
the mass shell. The difference of the PS and PV couplings,
that is mixing effect, appears due to the energy-dependent
behaviour of the resonance width. This difference can be
detected in the energy region far from the resonance. But
in this region the resonance contribution to the amplitude
becomes small as compared to others. The situation is dif-
ferent for the nucleon only that is mainly due to the large
mN N coupling constant. Taking this fact into account, we
put Xzn+ = 0 and X, ny~ = 0 in further calculations to
decrease the number of free parameters. In Fig. 1 we show
the energy dependence of the partial amplitudes for S and
P spin-isospin channels. The agreement of our 7N inter-
action model (solid line) with the results of phase-shift
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Table 1. Parameters of the model. The G values (31) are given
in GeV ™2, masses and widths — in MeV. For P11(1440) — nN
the coupling constant is presented

Parameter Value Error Parameter Value Error
Gy 353 1.0 M S1:1(1650) 1688.0 6.0
Gor 20.3 0.7 T S11(1650) 249.0 18.0
K 3.42 010 I, S11(1650)  32.0 5.0
GaNN 13.6 0.1  Irr S11(1650) 53.0 5.0
Xrn 0.109 0.006  pr pyy(1710) 1743.0 12.0
GrNPs3 286 02 pr,py(1710) 1.0 0.8
Z P33 —0.229 0.006 1. p,(1710) 277.0 36.0
Goy —33.0 10.0 o pyy(1710) 196.0  21.0
Gao 20020, P13(1720)  1754.0 10.0
M Py;(1440) 14680 10.0 1, p5(1720) 65.0 19.0
I';; P11(1440) 248.0 18.0 Trr Pi3(1720) 292.0  78.0
Gy P11(1440)  1.63 020 7 pi4(1720) —0.50 0.05
[rw P11(1440) 1730 140, S31(1620)  1627.0 6.0
M S11(1535) 1548.0 80 Sa1(1620) 75.0 3.0
Iy S11(1535) 102.0 8.0 Trr S31(1620)  83.0 6.0
11:" Sg“g;’gé) 1531'0 22060 M Ps;(1910)  2060.0 57.0
T Pt : I Psi(1910)  40.0  15.0
Frr P31(1910)  235.0  58.0

analyses [14,15] is good up to Pjap ~ 1 GeV/c. Small devi-
ation is seen for the S1; amplitude in the region P4, ~ 800
MeV/c. In this region, the contributions from Sy1(1535)
and S11(1650) resonances cancel each other, hence the am-
plitude is very sensitive to small details. It is interesting
to note that our results reproduce much better the pre-
vious (SM90) version of Arndt’s phase-shift analysis in
this region (see [14]). Some discrepancy in the P3; par-
tial wave for P, > 750 MeV/c can be explained by the
non-resonance part of the two pion production amplitude,
which is not taken into account in the present work.

In the table the parameters of the model are displayed.
For the resonances, the mass and partial widths were taken
as free parameters, and only for P11 decaying into nIN
the corresponding coupling constant is available. Other
parameters are defined as follows:

IrmpIpNN JrnroJo NN
\% TITpI P o Yo
qy = ZmeZti g, = JrmodeNN (31)
mp mg
T
G o 9Inmo9o NN G _ YaornGag NN _ gpNN
on — m2 y ap — Ta =V .
o ao gpNN

For the non-resonance interaction, we found the values
of the parameters close to those of [5] (for GX = 30.5
GeV~2). The wN scattering lengths calculated with these
parameters are a; = 0.151m ' and azg = —0.091m;!,
in qualitative agreement with recent data [5]. The reso-
nance parameters are consistent with the values presented
in PDG [1]. It should be noted that only four-star res-
onances are considered in the present work. Therefore, a
possible existence of other resonances [1,14] can change
the values of the parameters shown in Table 1. To obtain
more reliable results, a detailed analysis of the experimen-
tal data (cross sections, polarization and so on) is needed.
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To estimate how the results depend on phase shifts analy-
sis we have also fitted the KH80 solution. The conclusions
drawn from this fit are:

a) None of the model parameters are beyond the limits
(unfortunately large) published in [1].

b) It is rather difficult to describe simultaneously both the
S11 amplitude in the region 550 < Py, < 750 MeV/c
and the energy dependence of the total cross section
of the 7~ p — nn reaction at the threshold.

We found that including the ¢-channel graph with the
ap meson exchange leads to a significant improvement
(= 10%) in x2. At the same time, the contribution of
the n-meson production diagram with nucleon in the in-
termediate state becomes very small and can be neglected.
This graph is usually used to describe the n-meson pho-
toproduction cross section [4]. On the other hand, in the
fit without the ag exchange (dashed line in Fig. 1) we
can determine the contribution of this nucleon Born term
with parameters close to those used in the 1-meson pho-
toproduction: the coupling is pseudoscalar, with the con-
stant g,yn = 0.4. Therefore, it is possible that not all
the t-channel diagrams are accounted for in the n-meson
photoproduction. For example, the ¢(1020) meson has a
large yn branching ratio 1.26% as compared to the p and
w mesons, whose 7 branching ratios are ~ 10~*. But this
meson has not been included in the analysis yet. In any
case the simultaneous analysis of the pionic and photo
n-meson production is needed to understand the role of
NoN-resonance processes.

In Fig. 2 the energy dependence of the total cross sec-
tion of 7~ p — nn raction is shown. Solid line corresponds
to the full calculation and dashed one stands for the fit
without the ag-meson exchange diagram. As is seen from

2 4
E | ¥ BINNIE
Z35F ® DEINET
‘? f O RICHARDS
a 3r [ FELTESSE
53 L
Tt ULOS
025 O BULOS
; 5 CHAFFZE
2 NELSON
L5 |
S AN
05 |
0 :‘ N T B | R
700 800 900 1000 1160 1200
P lab (MeV/c)

Fig. 2. Total cross section of 7~ p — mn reaction. Solid line cor-
responds to full calculation, dashed line stands for calculation
without ao exchange, dottet line stands for S wave contribu-
tion to the ¢‘°*. Experimental data are from [18, 19, 20, 21,
22, 23, 24]
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the figure, the errors of the experimental data are large
and, therefore, these data are not sensitive to the de-
tails of the mechanism. The peak at P, ~ 760 MeV/c
roughly corresponds to the first S11(1535)-resonance posi-
tion, whereas the second maximum at P, ~ 1100 MeV /c
is usually explained by the P-wave contribution to o%°*.
Here we would like to note that such a structure may be
in the S-wave only, due to the interference of two S7; res-
onances. Indeed, the S wave K-matrix for the mp — nn
transtion in this region has the following form:

A1y
M1 —w

Qo Qay
MQ —w

+ + non-resonance terms. (32)

It is seen from this formula that there exists an energy
M, < wy < Ms, where K,_,(wo) = 0. Since the sec-
ond S11(1650) resonance has a small branching ratio for
the 7 decay, this energy must be close to Ma(Pqp = 980
MeV/c). To demonstrate this, in Fig. 2 are shown the
calculation results, where the S wave is kept in o},
only (dotted line). The minimum at P, = 980 MeV/c
is clearly seen. In Fig. 3 the differential cross sections for
the m~p — nn reaction are presented. Unfortunately, large

errors and some contributions in the data do no permit to
extract the P-waves contribution reliably. Probably the
best way is to measure the n meson production on a po-
larized target. Indeed, the polarization parameter P is de-
fined as follows:

2Im[GH*]

= 33
G+ [ (33)

where G and H are the non-spin-flip and spin-flip invariant
amplitudes for 7~ p — nn reaction. These amplitudes can
be expressed in terms of the partial-wave amplitudes Fj+

according to definitions:

G=)> [(l+1)F+ +1P-]|P/(cosf)
=0
H =sin60>» [F+ — 1F-]P{(cos). (34)
=1

The expansion of the H amplitude starts with [ = 1, hence
the polarization parameter P = 0 for S waves only. To
show the order of the magnitude for possible measure-
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ments, in Fig. 4 the calculated values of P are presented

for several energies.

6 Conclusions

a) The K-matrix approach gives a natural way to sepa-
rate the resonance and non-resonance pieces of the 7wV

amplitude.

b) The tree level model for the K-matrix with effective
Lagrangians leads to a good description of all S and
P elastic partial amplitudes without introducing any
phenomenological form factors. To understand remain-
ing difference, a more sophisticated theoretical analysis

is needed.

c) For the inelastic mp — nn reaction, a satisfactory
agreement with available experimental data is ob-
served. The t-channel ag meson exchange mechanism
leads to a considerable improvement of the overall de-
scription of data. But to specify reliably the 77p — nn
reaction mechanism (in particular the P and D wave
contributions), more accurate experimental data are
needed together with a refined theoretical study. The
measurement of the polarization parameter P is pro-

posed.

0

cos9 cm1

Plab = 750 MeV/c

S VR |

Fig. 4. Polarization parameter P in
the 7~p — mnn reaction. Solid line

-1 0 1
cosO cm
Plab = 840 MeV/c
. S
-1 0

corresponds to full calculation, dashed

cos9 cm1 line stands for calculation without ao
Plab = 930 MeV/c exchange

d) To determine carefully the resonance parameters, an
explicit analysis of the experimental data (cross sec-
tions and polarization parameters) is needed. The
study of all possible (not only four-star) resonances
is necessary.

We grateful to B.L. Birbrair, H.J. Leisi and E. Matsinos for
useful discussions.

Appendix

The K-matrix for the process with the resonance which
can decay into n different channels has a form:

a1 a1 [eRNeT™
M—w + ﬂll M—w + 612 M —w + ﬁln
asa Qg Qs
et Pa1 pfes A+ P . 3o+ Bon
= )
apo apo anpo
A{n,ﬁ) + Bnl 1\/}1,120 + ﬁn2 e ]\/}LZ) + ﬁnn

(A1)

where (3;; is corresponding non-resonance term. Let us
prove that at w = M det K can contain the first order
pole only. From the determinant relation, we get:
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det K
[e SN 51 [e5NeD) a1y
M—w M—w M—w
asa asa a0y
ot B 372E 4 P2 - pio 4 Pon
= det )
Qp QO ApQn
M_Jj + ﬂnl M—i} + 677,2 o M—w + ﬂnn
611 512 ﬂln
asa asa Qs
st Bo1 5725 + Poo oo 35+ Don
+ det ) .
apo apo ana
]\/[nfli) + Bnl ]\/[n,j) + ﬁnZ KR ]\4”,,3) + ﬂnn
(A.2)
The first determinant in (A.2) can be expressed by:
o a1 a1y
M—w M—w M—w
Qo] [eDYe D) Q20p
M—w M—w to M—w
det .
apo apo ana
a1 a1 Q1
M—w M—w M—w
B21 P22 Ban
+ det
anpQ [ e e} AnQn
M,J, + ﬁnl levj) + ﬂn2 o M—w + /Bnn
(A.3)

The first term in (A.3) equals to zero, since it contains
two proportional rows. Repeating this procedure for the
second terms in (A.2) and (A.3), we see that only one row
contains the pole in the final expression. Hence det K has
the first order pole only. Under unitarity transformation
(18) the value of det K is conserved. But the transformed
matrix K¢ is diagonal, therefore det K¢ is the product of
its diagonal terms. So, we conclude that only one element
of K¢ can contain the pole term. Another quantity which
iw conserved under the unitarity transformation (18) is

A.B. Gridnev, N.G. Kozlenko: Pion-nucleon scattering in the K-matrix approach

the trace. So, this pole term has the following form:

Q; 0
—~ M —w’
1

(A4)
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